eBook

The Essential
FinOps Guide to
Kubernetes Cost
Management

Kubernetes — The go-to platform for

container mdnogement.

Introduction
Challenges of Kubernetes cost observability

FinOps
FinOps principles
FinOps lifecycle

Implementing Kubernetes cost observability
Step 1- Tracking: Apply labels in Kubernetes

Step 2- Distribute expenses: Apply the unit of economics

Cloud cost monitoring tools
Selecting cloud cost monitoring tools

Cloud cost monitoring- your options

Optimize your Kubernetes spend
Rightsize

Right zone

Right time

Optimize your autoscaling

Flex

Configure quality of service

Whats Next?

01

02

06
06
08

10
10
10

22
22
23

28
28
28
29
29
29
29

30

Introduction .

Businesses are deploying more and more containerized applications to the cloud. This
has, naturally, led to an increase in the use of Kubernetes — the de facto container
management platform. K8s enables engineers to optimize clusters for cost,
performance, resilience, capacity, and scalability — by proactively creating, supporting,
and dumping container instances as needed.

However, cost management was never one of Kubernetes' core features. While
containerization is a sublime solution to the issue of scalability, it certainly removes the
likelihood of a “fixed cost” for your cloud usage by day, let alone by month. Add to this
the complexity that arises from multi-tenancy architecture, and many businesses suffer
an ongoing struggle to assign costs and forecast spending accurately.

(-)

This guide will lead you through the process of recognizing and addressing the
challenges associated with achieving cost observability in Kubernetes-
x orchestrated applications, detailing step-by-step solutions you can
implement. *

. J

Let's start by examining why determining the cost of running distributed applications in
the cloud can be such a challenge.

Challenges of Kubernetes

cost observability 4

When managing Kubernetes, controlling the cost of resource consumption is difficult for
both startups and established organizations alike. It's particularly confusing and
complex to analyze the cost incurred by each pod, and developers tend to play it safe
and over-allocate resources, resulting in spending outstripping use.

Consider the mechanics of the micro services architecture layer: the Kubernetes control
plane distributes applications as pods to worker nodes and runs them. Worker nodes are
the virtual machine (VM) instances where actual Kubernetes workloads run. It is possible
to specify the resource requirements of pods such as CPU, RAM, and storage — and
these resources are supported by different VM instances, each with its own price tag. If
you use a cloud provider such as AWS, you are probably also implementing Amazon EC2
instances as computation nodes for pods in your Kubernetes cluster.

é)

*
With multiple applications running on the same worker nodes and being

scaled up and down automatically, it's fairly complex and time consuming to
calculate the actual, or estimated, cost of an application running in

. Kubernetes.
X
__ J

Let’s clarify this with a real-world scenario. Assume you've deployed a MySQL database
to your Kubernetes cluster on AWS. Kubernetes not only starts a MySQL container in one
of the nodes in your cluster, but it also creates volumes, secrets, stateful sets, replica
sets, pods, service account users, configuration maps, services, and ingresses to make
your new MySQL database scalable, reliable, and reachable.

Yes, those costs for the infrastructure items will be listed in the AWS Cost and Usage

Reports (AWS CUR), such as storage or compute. The simplest method to gain visibility
over cloud costs is to apply tagging to resources based on their projects, owners, and

other metadata. However, with a dynamic orchestrator like Kubernetes, it is not feasible
to tag every single Kubernetes resource in the cluster. There is no simple way to break
the abstraction provided by K8s API and attribute the cost of the cloud infrastructure to
K8s resources such as your MySQL.

Figure 1. Cloud cost bills reflect your provider’s unit of economics, not yours!

p A
0D :
we= AWS Spend Analysis
v
Fitor Manth-to-date Spend Daity Spend v
Q fate
Suggested

@ $9.99K ~ /0

Month-to-date Spend by Service Month-to-date Spend by EC2 Instance Type

Product_instanceType
W i xlarge
Wt Lo

o4

e i

W 2mics

md.xdarg

ANE Kay Maragemaent Servce .

S
_ Y,

Image source:

There are two critical points to understand regarding your cloud bill. First, the billing unit
is not the same as the unit of economics that you actually apply to your business. Your
cloud bill shows the unit costs according to metrics that matter to the cloud providers
themselves (Figure 1), not to you. Second, billing statements are not granular enough to
allow you to genuinely understand the fees associated with supporting your
application/s.

https://aws.amazon.com/blogs/big-data/query-and-visualize-aws-cost-and-usage-data-using-amazon-athena-and-amazon-quicksight/

[] Know your enemy

As noted earlier, developers tend to overestimate resource allocation. It's also beneficial
to recognize other common challenges when strategizing on how to optimize your
Kubernetes spending.

Resource asymmetry

Typically, a K8s ecosystem supports multiple workloads with different resource
requirements. Some applications rely on high CPU, while others are memory intensive.
Such resource asymmetry is handled by the kube-scheduler, which applies a scoring
algorithm to assign the right node for each workload. The scoring algorithm is often a
combination of multiple factors, and comprehending how and when a node is to be
allocated to a workload can be complex.

Fluctuating resource consumption

Another crucial factor in controlling consumption costs is the varied usage of resources
by Kubernetes workloads. As CPU and memory resources constantly change for
dynamic workloads, every change in resource consumption is responded to by the fresh
provisioning, realignment, or destroying of pods within nodes.

Missing requests and limit

Request and limit parameters help optimally allocate resources to pod workloads within
a node. In a node with multiple pods, if one among them does not have these
parameters defined, this pod tends to consume all resources available in the node. In
such instances, other pods never get the resources they require, impacting the overall
performance and cost of the cluster.

(- X)

These challenges, and more, can be overcome by applying the best practices
considered within this guide. Before we address the how, let’s consider what

. our objective is.
*

[] Know your destination

Part of the power of the Kubernetes API is the strong abstraction it places between the
infrastructure and applications running on a cluster. However, the challenge then
becomes: Which Kubernetes resource should be allocated the costs?

(-)

*
The task becomes identifying a Kubernetes unit for cost calculation such as

pods, deployments, or namespaces. Whichever you choose, the outcome
should be that you have visibility over the cost of your dev namespaceor test

. deployments.
X
\. J

Before we dive into the nitty-gritty of setting up Kubernetes to improve your cost
observability, we will take a good hard look at a cloud financial management discipline
and cultural practice that enables organizations to get maximum business value from
the cloud: FinOps. Because there is no point in collecting data if you don’t have the
structures in place to make meaningful adjustments in light of the information it
provides.

HnOps*

FinOps (short for Financial Operations) is an important cloud operating model that
enables cross-functional teams from technology, business, and finance to work
together. Applying FinOps binds different stakeholder groups — thanks to the shared
language and processes. This enables engineering and finance teams, business
stakeholders, and executives to manage your cloud costs better and deliver business
features faster. A FinOps implementation goes beyond simple cost-saving strategies. In
fact, it is often vital to increase your cloud spend to drive more revenue or to support the
growth in your customer base. FinOps isn't just about tracking cloud costs; it's also about
making decisions that will increase the cloud’s business value. FinOps empowers teams
to be agile against blockers and respond to opportunities to optimize their spending.

(o * \
This section will take you step-by-step through understanding the challenges
of creating cost observability when implementing K8s-orchestrated

< applications and the solutions you can apply.

. J

Let’s start by examining why determining the cost of running distributed applications in
the cloud can be such a challenge.

l FinOps principles

The FinOps foundation offers several guidelines to help your organization adopt a

successful FinOps practice.

Collaborate across teams

Applying FinOps often requires a cultural shift to ensure that teams no longer work in
silos. FinOps increases collaboration between teams and can help your organization lay
a solid foundation for your processes around cloud financial management.

https://www.finops.org/introduction/what-is-finops/

Make decisions based on the cloud’s business value

Metrics provided by cloud services offer many potential benefits to developers and can
help them enhance the delivery of their applications. Development teams can consider
cost in the same way as they do other efficiency metrics to incorporate it as a non-
functional requirement and improve the delivery of business features.

Form a centralized FinOps team

The FinOps team takes responsibility for your cloud strategy and cost governance. They
must set cost-efficiency expectations and educate engineering teams with regard to
best practices and standards. By establishing cloud cost-control guardrails and cost-
tagging standards, the FinOps team creates budgets and cost forecasts, develops
dashboards, and works to optimize organizational costs.

Take ownership of cloud usage

FinOps is only functional when each team in your organization takes responsibility for
the cloud costs of its products and resources. By tracking team-level expenses and
providing in-depth visibility across all spending, teams are empowered to optimize
costs. Providing data is key to stimulating ownership over workload-level cost efficiency
and enabling rightsizing exercises.

Create easily accessible FinOps reports

Ensuring that everyone has access to cost reports is a key step to managing cloud
spending. Access to cost dashboards supports forecasting and simplifies tracking the
cloud usage of applications. Sophisticated reports implement anomaly detection,
ensuring that teams are immediately notified of an abnormal event. This is vital to
setting up a fast feedback loop.

Take advantage of the cloud’s variable cost model

It is perhaps a little too easy to provision new resources in the cloud. This means that
engineers need to remain cost-conscious and ensure optimal resource usage. Savings
are often identified by undertaking cost optimization practices like rightsizing resources,
purchasing reserved instances, and turning off resources when not in use or in
development/sandbox environments.

[] The FinOps lifecycle

These core FinOps principles go hand-in-hand with three distinct phases — inform,
optimize, and operate. These should be continuously cycled through.

(-)

Rates & Usage

Operate

Continuous Improvement
& Operations

_ J

Image source:

Inform

The inform phase provides teams with visibility into their cloud spending in near real-
time- assisting with a granular understanding. It requires mapping costs to their
applications and business units. These can then be analyzed and rolled up in reports to
generate budgets, forecasts, cost dashboards, and scorecards.

(-)

A key component of this phase is to implement a standardized tagging °
strategy. This step is crucial to provide visibility into usage and spending.
X Untagged resources must be identified and tagged to ensure full cost
transparency and accurate chargeback. With this phase initiated, your
FinOps teams are immediately better informed about costs and able to identify

potential areas for optimization. "

https://www.finops.org/introduction/what-is-finops/

Optimize

Your cloud vendor’s cost governance and optimization tools can help you review your
organization’'s costs and identify trends in usage data via an interactive interface. Such
tools can identify underutilized resources — assisting you to eliminate any resource
wastage. You may be able to identify opportunities for purchasing reserved instances or
create a savings plan to lower long-term costs. It is also important to compare options
for expensive resources against similar third-party or cloud vendor’s services.

éa)

Setting up cost anomaly alerts is an excellent strategy to identify any unusual
usage patterns or cost spikes. Alerts assist the FinOps team in analyzing your

X entire fleet of resources. .

*
_ _J

Operate

The operation phase is when you implement your cost optimization plan created in the
optimization phase. FinOps team members do not implement the changes; rather, they
provide guidance and visibility into cloud usage. Ensure engineering teams are both
trained in effective cost optimization strategies as well as empowered to implement the
recommendations. Ultimately, it is your engineering teams that make those
infrastructure changes to optimize their cloud spending.

Never take your eye off that ball!

Continuous improvement and automation are both important when building an
effective cost governance strategy. It is important to support automation in your
processes so that these cost optimization measures can be performed repeatedly.
Stakeholders should regularly review cost reports to ensure that decisions are timely
and to minimize the feedback loop.

Now that you understand FinOps principles and the FinOps lifecycle, we can take a
detailed look at the specifics of gaining visibility into costs associated with Kubernetes
cloud environments.

Implementing Kubernetes

cost observability 4« o

Gaining visibility into your Kubernetes costs in the cloud involves a dual approach:

Step 1 - Track the actual usage: Your public cloud billing reports, such as AWS CUR, will
provide the total CPU, memory, networking, and monthly storage cost. It is then possible
to allocate CPU and memory according to the Kubernetes cost monitoring resource
limits or actual usage metrics.

Step 2 — Distribute shared expenses: Those shared expenses such as networking and
storage must be assigned to particular projects, teams, namespaces, and applications.
Also, suppose your autoscaled architecture includes pods that support a multi-tenant
service. In that case, you need to map these Kubernetes units for cost calculation — such
as pods, deployments, or namespaces to the abstraction layer — the unit of economics.
By creating such methods to allocate costs, FinOps teams can zoom in on single-tenant,
single-team, and single-application costs.

There are several strategies that you can apply to assist with tracking to enable better
expense allocation in Kubernetes, and it is these that we will consider next.

[] Step 1tracking: Apply labels in Kubernetes

Labels are a key control layer supported by K8s. Most people probably first use labels to
optimize how they leverage K8s simple APl and third-party integrations. For example,
labels allow your cluster to communicate with client tools and libraries such as kubectl
and Helm.

However, the application of Kubernetes labels can be far more nuanced than this single
use case. If Engineering needs to debug an issue, DevOps wants to shut down non-
essential infrastructure resources over a holiday, or FinOps wants to understand the
costs in a multi-tenant environment in K8s, labels give you that power.

To apply labels, you first need a firm understanding of:

e Namespaces
e What labels are
e How to apply them

e How to conduct searches and the benefits they offer

What is a Kubernetes namespace?

A namespace is a high-level collection of K8s resources. They are intended to

in environments where many users are spread Across
multiple teams or projects. A resource’s name must be unique within a namespace (but
not across namespaces).

Because each Kubernetes resource can only belong to one namespace, they create
natural divisions between teams and applications. Using the ResourceQuota object,
each namespace can be allocated with the number of objects and a fair share of the
Kubernetes cluster’s resources, including:

e Memory limit

e Memory request

e CPU limit

e CPUrequest

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-multiple-namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-multiple-namespaces

Breaking down a cluster into multiple namespaces and monitoring each namespace
helps identify which team or service has more cost overhead and assists with
optimization efforts.

Your team may not need to apply namespace names. In fact, for clusters with user
counts up to a factor of ten, you will probably not need to create them at all. The reason
they are important to our discussion is that labels are also used to distinguish resources
within the same namespace.

What are Kubernetes labels?

K8 labels are key-value pairs that are part of an application's metadata. Kubernetes
labels offer a simple technique for identifying Kubernetes objects and aligning them into
groups.

With Kubernetes, the concept of an application is (deliberately) left very open and
defined with metadata. This means that creating your own label is a very open-ended
process. This leaves it entirely within your control what data you choose to hold.

That is not to say there are no conventions. In fact, the Kubernetes services use labels to
schedule pods to nodes, manage replicas of deployments, and network routing of
services.

Labels or annotations?

Two properties may hold key-value pairs, labels and annotations. Labels should be used
to attach identifying metadata, for example:

"metadata”; {
"labels™ {
“tenant”
‘environment”;
“tier":

app”:
"version™

Annotations are used to attach additional arbitrary data to objects. For example:

"metadata”; {
"annotations”; {

“first_deployment”:
"deployed_by":

Note, if you have set up an annotation that later becomes used to group objects, you
probably need to consider that this has been elevated to a “label’, and reassign it.

Kubernetes standard labels

Kubernetes services and replication controllers use labels to manage pods, target
workloads to specific instance types, and control services across multiple cloud provider
zones. Therefore, label use is hard-baked into the Kubernetes design.

Standard labels include:

key: Pair (the property's value)
app.kubernetes.io/name: Name of the application
app.kubernetes.io/part-of: Name of the application
app.kubernetes.io/managed-by: Name of the application

Many standard labels are auto-filled by K8s, so it is well worth applying them for your
daily operations and client tools. For example:
> app.kubernetes.io/managed-by: "

Will be populated with:
“app.kubernetes.io/managed-by: helm’
if “helm” is the package manager.

Why setup custom Kubernetes labels?

Custom labels are an excellent solution to several challenges that you will face when
setting up a Kubernetes environment. They are very similar to the tagging concept in
AWS: AWS tagging also relies on key-value pairs that identify AWS resources in EC2, S3,
Redshift, and EFS.

Kubernetes labels allow DevOps to optimize searches, apply configurations, and
manage deployment administration. Labels also enable FinOps by implementing a cost
monitoring mechanism by identifying the pod-level resource usage for different
environments or applications.

Custom labels in action

Say that DevOps wants to monitor the status of pods according to their environment;
you can set up key pairs that identify the environment, such as:

environment: development
environment: staging
environment: production

Such granular data allows you to make specific calls. For example, you want to list the
status of all production pods:

kubectl get pods -I ‘'environment=production’

This is far superior than having to make an API call for all pods and then filtering through
the output after.

One of the benefits of applying a labeling strategy is that although each component
may be granular, labels collate them into the bigger picture — letting you zoom into or
rebuild that picture. Let's say you have a multi-tenant environment. If you want to know
all of the services a particular tenant uses, then you can collate that tenant's data just
by filtering.

Say our example tenant:
"tenant™: "explo-6834"
is supported on tier==backend and tier==frontend.

Should you receive a query with regards to a perceived service issue, a simple API call
retrieves all the service-related data you need for that tenant. No need to look up any
system diagrams to see what applications support that tenant's service. You retain your
modularity without losing any visibility.

é)

Labels are also very useful for release management. Found a backend bug and

want to release a patch? Simply deploy a new set of v:1.83 backend instances,

replace tier:backend, version:v1.82 with tier:backend, v:1.83 in the service label

selector. The pods running v1.82 were orphaned, and you have deployed a new
set of instances.

_ J

Constraints on labels
The following syntax constraints are applied to labels:

e Key must be unique within a given object.

e Min 0-max 63 characters for the segment (required): 253 for prefix (optional).

Start and end with alphanumerics [a-z0-9A-Z] (unless length is 0).

Dashes "-", underscore “_" and dot "." allowed (internally).

(Optional) prefix must be a series of DNS labels separated by dots and followed by a
slash.

The inclusion of the prefix allows users and automated system components, for
example, kube-scheduler, or third-party integrations, to manage resources.

Let's unpack those two syntax constraints that could cause confusion a little further:
Enforcing the key as unique prevents us from making copy/paste mistakes such as
duplicating the environment property.

"metadata”; {

"labels™ {

"environment”:

e Consider a standard label such as: app.kubernetes.io/name.
e {app.kubernetes.io} is the prefix providing the DNS label.

e {name} is the segment.

Searches
The Kubernetes APl supports searches for:

e Equality, i.e, Il matches.
e Inequality, i.e., specify a "does not match’.

e Sets.

Equality uses = (or, if the fear of resetting a value leaves you feeling itchy, ==). Inequality
is the standard !=, and a set or array of values is specified with a commma separator.

From our previous example of labeling our environment, therefore, we could use:

e Equality, to return the data on the pods in production:

kubectl get pods -I ‘environment==production’

¢ Inequality to return the pods in production and development

kubectl get pods -I ‘environment!=(staging)'

Or we can search for sets, i.e, an array. Set searches apply “in”, "notin”, and "exists":

kubectl get pods -1'environment in (production)’

to return the data on the pods in production. Or

kubectl get pods -I 'environment notin (development, staging)'

Where the separating ;' comma acts as an AND (&&) operator.
Note that OR (]|) is not supported.

Multiple conditions

If you provide more than one equality condition, then the matching object/s must
satisfy all of the constraints. For example:

environment=production
tier!=frontend

Similarly, set-based conditions return the sub-set of objects that match all the given
conditions.

Thus, according to our example:

"metadata”; {
"labels"; {

“tenant”:

"environment":
“tier":
app™

"version™

Where the environment may be: staging, development, or production, then:

kubectl get pods -1 'environment in (production)’

would return the same object as

kubectl get pods -l environment=production,tier!=frontend

Labels: Best practices

There are three key considerations when implementing best practices for your K8s
labels:

(D Have a labeling strategy

(@ Use templates

(3 Automate(Cl/CD) labeling

(D Your organization labeling strategy

When a system is designed to be open-ended, it is important to apply your own
strategies and conventions to ensure that your labels provide you with the functionality
you need. Once such conventions are established, you can add checks at the Pull
Request (PR) level to verify that configuration files include all the required labels.

Setting an informative prefix can assist you in instantly identifying which service or
family of functions a label applies to. It is good practice to choose a prefix to represent

your company and sub-prefixes to identify specific projects.

If you want to see the labels applied to an object, you can add this flag to your call:

kubectl get pod my-example-pod --show-labels

(@ Templates

In K8s, the concept of a template has a very specific application, thanks to pod
templates. However, it used to be that the term “template” meant "a shaped piece of
rigid material used as a pattern for processes such as cutting out”.

So, let's apply the term beyond pod templates, because it is good practice to apply a
rigid structure to shape all your configuration files with ready-to-use patterns. From
‘PodTemplate” (specifications for creating pods) to metadata structures for
applications, your team will all be on the same page with a ready-to-use label strategy
in place.

What you tag will depend on your needs, but will probably include those provided in
our examples, such as:

e Environment

e Tier

e Version

e Application uuid

And, in a multi-tenant environment, where a pod is dedicated to one tenant, never
forget:

e Tenant

Because you will love the cloud cost management K8s provides you by including
tenancy!

It is recommended that you ensure your map labels for all business units incurring a
cost so that they may be aligned with consumption logs for shared resources. This
makes cost analysis, reporting, and optimization easier for individual teams, services, or
business lines. Once you have defined a labeling strategy that teams can apply, the next
best practice step is to validate the process. Conduct static code analysis of all resource
config YAML files to verify the presence of all required labels. A PR should only be merged
if the configuration file provides all the required labels.

(3 Automate labelling for C1/CD

Within your continuous integration/continuous delivery (CI/CD) pipeline, you can
automate some labels for cross-cutting concerns. Attaching labels automatically with
CD tooling ensures consistency and spares developer effort. Again, validate that those
labels are in place: Cl jobs should enforce proper labeling by making a build fail and
notifying the responsible team if a label is missing.

You can define variables on Jenkins files or GitHub actions workflows and parameterize
the label part to automate labels in Kubernetes manifests. At the same time, you can
use Helm to easily deploy each version you want. And automated labels will help you
here for each deployment strategy (canary, rolling update, etc.). Helm sample usage:

apps/vl
Deployment

app.kubernetes.io/name:
app.kubernetes.io/instance:

kubernetes.io/change-cause:

[] Step 2- Distribute expenses: Apply the unit of economics

It is clear that, with labeling, cost insights can be relatively simple to achieve if you are in
the enviable position of being able to assign a Kubernetes namespace to each tenant or
project. In reality, DevOps usually faces the challenge of measuring a tenant’s usage of
shared, autoscaled resources — which makes cost allocation more complicated. Cost
allocation often requires assigning a tenant’s pro-rata usage of the cluster’s resources,
including CPU, GPU, memory, disk, and network. This is where an abstraction layer, the
Unit of Economics, comes in — to let FinOps zoom in on single-tenant or single-project
costs.

Use cost monitoring tools to simplify FinOps

Cost analysis, reporting, and optimization are simplified by applying cost monitoring
tools. Since cloud-native tools offer limited features for tracking expenses, companies
often adopt third-party cost management tools to forecast budgets and monitor cluster
expenses. These tools provide real-time visibility of pod-level resource utilization and
offer insightful reports about the expenses incurred. Automation is one of the most
crucial features that such tools offer, helping to detect, analyze, and report any resource
usage abnormalities before they adversely affect budgets.

Having set up your tagging with labels, you began phase 1 of your FinOps journey:
Inform. You are now able to identify over-provisioned resources and map labels for all
business units incurring a cost against consumption logs for shared resources. It is that
coherent labeling strategy that will now pay out dividends into your FinOps strategy,
allowing you to:

e |dentify over-provisioned resources.

e Allocate cost to individual teams, applications, or services. ¢

e Adjust cost by individual team, application, or service.

Using your cost monitoring tool empowers you to undertake phase 2 of your FinOps
journey: Optimize and take informed optimization decisions. Some popular cost-
monitoring tools include Kubecost, Prometheus, Kubernetes Dashboard, the ELK Stack,
and of course, Finout. Let’s take a look at these in more detail.

Cloud cost monitoring tools

+

Kubernetes does not come with an out-of-the-box cost observability tool, which is why
many teams implement cloud cost monitoring. Such tools simplify the process of
understanding and calculating the costs of running your applications in the cloud.

Selecting cloud cost monitoring tools

When selecting such a tool, what criteria should you be considering? We recommend
measuring potential solutions against the following five performance criteria:

(D Installation: It should be easy to install and set up any tool from a third-party
provider. Cost observability tools must also be installed with minimal intrusion on the
cluster to limit performance/security concerns.

(@ Ease of configuration: The Kubernetes API creates an abstraction layer between the
infrastructure and end-user applications. It is critical that your cost monitoring layer
supports configuration options that assist in breaking the abstraction layer. A faulty
configuration will affect budgets due to mistaken calculations and estimations.

(3 Granular cost visibility: One of the critical characteristics of cost observability is to
provide a fine-grained view over costs such as costs per pod/deployment/
namespace, and other resources in your cluster.

(@ Connection to external billing (such as AWS billing data): Your Kubernetes monitoring
tool should connect to your cloud provider's billing system. Your AWS bill, for
example, has cost information that is essential to accurate Kubernetes cost.

(5) Open-source: Kubernetes is an open-source platform and its popularity stems at
least in part from this. Check the license of the tools you are using. A willingness to
work open source is always a good trait in a potential service provider.

® Open-source: Kubernetes is an open-source platform and its popularity stems at
least in part from this. Check the license of the tools you are using. A willingness to
work open source is always a good trait in a potential service provider.

The cloud cost monitoring tool ecosystem is growing as new service providers attempt

to gain traction in the field. We summarized how the top five trending cost observability

tools measures up against these criteria in Table 1.

Table 1. Top 5 Cloud Cost Monitoring Tools: Performance Assessment

Configuration . Cost Connectionto | OPen-source
oo Installation o - & community-
dificulty visibility external billing .
driven
Finout Easy Easy Yes Yes Partly *
Kubernetes

dashboard Easy Easy No No Yes
Prometheus Hard Hard No No Yes
ELK stack Hard Hard No No Yes
Kubecost Easy Easy Yes Yes* Yes

* ldentify over-provisioned resources

¢ Allocate cost to individual teams, applications, or services e

Cloud cost monitoring — your options

Let’'s take a closer look at what you can expect from these tools:

(D Finout | Finout is designed from the ground up with FinOps in mind. With a

straightforward configuration and installation, it integrates with your Prometheus DB

using Finout’s open-source cronjob or with your Datadog account APL Either

approach provides access to your Kubernetes cluster metrics (CPU and memory).

Once integrated, Finout has access to cost per pod, deployment, namespace, cron

job, StatefuSet, and cluster; using these metrics to enrich your AWS billing data with

granular cost visibility. Once this level of cost visibility is achieved, the problem of

allocating cost per customer/tenant/dev team/business application is solved. Using

Finout, the user can quickly and accurately report, via a simple and intuitive platform,

which K8s and AWS components each business unit is composed of and their costs

— just as if Amazon sent you the bill.

@ Kubernetes dashboard | Kubernetes Dashboard is an open-source, general-purpose
web Ul for Kubernetes clusters. It is part of the official Kubernetes landscape, so its
configuration and installation are straightforward. With Kubernetes Dashboard, you
can check what is running in your cluster and see its distribution to your worker
nodes. However, the dashboard does not provide any information about cost
visibility, such as price per pod or deployment. In addition, you cannot connect the
dashboard to any external billing system, such as AWS Billing, for data collection or
enrichment.

I-cubernetes Q Search + A O

Cluster
Workloads

Cluster Roles

Mamespaces
CPU Usage - Memory Usage -
MNaodes

_ e
Persistent Volumes - . 124 .g_ B T ——
. " .
Siorage Classes el o
o.0en .'-3 BEE M E
- - - ”

b - = - - B
amespace 5
0.0
All namaespaces - 5008

T T T T T T T - @ b7 77T 7T 77 T T T T 1
2o 1zoe n Ny Fa) war e n o o mn = s e e LEEd

Overview B CPU Usage B Memory Usage
Workloads

Cron Jobs

Workload Status -
Daemon Sets
Deployments
Jobs

Pods

Replica Sets

Replication Controllers Daeman Sets Deployments Pads Replica Sets

Stateful Sets

. J

Image source: Kubernetes

() Prometheus + Grafana | Prometheus is today’s leading open-source monitoring
framework that provides out-of-the-box monitoring capabilities for Kubernetes.
However, it is neither easy to install nor configure. Configured properly, Prometheus
can collect CPU, memory, and storage metrics from all your pods and nodes — in
addition to Kubernetes-specific metrics. However, it lacks the cost visibility for
Kubernetes resources and a connection to external billing systems.

By the way, you can integrate Prometheus with Grafana (multi-platform open source

analytics and interactive visualization web application) and increase the visibility of
your collected metrics.

Image source:

-

N o 1.9GB 0O

Processes

CPU Usage [Metricbeat System] ECS

per 10 minutes

Wetwark Tratti: (Packsts] [Metncoeat 5 ystem) ECS

-

' o Dashboard [Metricbeat System] Host overview ECS
27187% 26.175% 0.897
Swap usage [Metricbeat System]... Mamory usage vs total [Metricbe... Number of processes [Matricbea...

= = 1 36.926%

i ® 117047

g : ® nice 0%
n o .

&1
b ' . .
por 10 minutes
Memary Usage [Metricheat System] ECS

® U 19GE

® C. 4.368

E.1.108

8 @
215.4KB/s 118.2KB/s 0
17868 8.7G8 o
Disk usod [Metricbeat Systom] E... Disk Usage [Metricbaat Systom) ECS
8.6% ' .
System Load [Metrkcbeat System] ECS
0.058
® 087
® 0EE
)
par 10 minutes
Disk 10 [Eytes] [Metricheat System] ECS
L oafs
BU5MEy

Metwork Trarmic (Bytes] [Melricoest Sysiam] ECS

per 10 minutes

Image source:

(@ The ELK Stack | The ELK Stack is a collection of three popular open-source tools:
Elasticsearch, Logstash, and Kibana. The stack provides a central location to collect,
analyze, and view logs of applications running in the cluster. Because of this, it is a
valuable option for diagnosing and troubleshooting the problems of distributed
applications. However, it is difficult to install and configure, and lacks a connection to
external billing systems or cost visibility over Kubernetes resources.

()
A Home Overview // Azure Cluster #1 UPGRADE C
il Allocation o Monthly cost Cost Efficiency

Monthly savings of $215.38 identified LEARN MORE >
e $303.15 11.7%
@ Health
Monthly cluster costs Resource Efficiency
A Notifications

Memaory

Total cost ~ USTER METRICS » REAL-TIME ASSETS)

Deployment Allocation Product Allocation

@ gloo-sy i Y @ gloc) @ kube-system/coredns @ alerimanager @ cost-analyzer @ gico @ grafana @ promethews
COST ALLOCATION 3
Neamestacs Monthly Cost Efficiency mfrastructure health
fubesystem $1.32 (1)
gloo-system $0.56 Q
kubecost $0.43
«" Switch clusters default 50.31
remlin $0.01
£x Settings g .
\ Your health score is Yy

(5 Kubecost | Kubecost is a cost monitoring and management tool that focuses on cost
visibility and cost control. Kubecost's free offering is an open-source solution with
basic configuration and installation into the cluster. It helps reveal the actual price of
your Kubernetes resources, such as pods or deployments. However, you can't
connect it directly to your cloud cost management tool external billing systems, such
as AWS Billing. In order to enrich and consolidate data, you need to connect your
billing data to an AWS Athena database. In addition, most of its major capabilities
are locked behind a paywall.

é)

Cloud cost monitoring tools are not simply about spending less; after all, to
grow, you need to scale. Often though, such tools can be used to protect those
budgets and identify overspends. Let’s finish off by taking a look at budget-
saving initiatives that you can undertake to optimize your spending in K8s.

Optimize your Kubernetes spend "

By gaining better visibility over your Kubernetes costs, you have achieved phase 1 of the
FinOps lifecycle “Inform”. Now informed, it is time to Optimize. And, with a service as
flexible as Kubernetes, there are several optimizations that can improve your bottom
line.

Rightsize

Rightsizing pods is one of the most effective approaches to limiting budget overruns.
Define, measure, and update the resource requirements of pods. Identify pods with
surplus resource allocation to optimize and free up resources.

Based on the value of the request and limit pod parameters, Kubernetes scheduler can
choose the node for the pod. This allows the pods to function normally, ensuring better
stability and less resource wastage. Defining the right values for the Limit ensures that
the pod is only assigned the amount of resources requested by the Limit and prevents
starving other pods due to resource unavailability.

é)

As a pod can contain multiple containers, you should set the parameters for all
containers to get the aggregate request and limit that the pod requires.

_ J

Right Zone

Distribute workloads to cheaper regions, zones, and nodes. Pricing is not the same for
each region, zone, or server even within one provider, for example, per AWS cost
management provider. Always consider moving some of your applications to other
parts of the cloud to optimize costs.

Right time

Create a mix of different nodes and use an optimization strategy for scheduling:
Kubernetes can assign workloads to particular servers by grouping applications and
node groups. With an optimal scheduling strategy, you can decrease the cost of total
resources allocated.

Optimize your autoscaling

Kubernetes is designed to support your applications with the processing power and
services they require on an as-you-need-it basis. With autoscaling, Kubernetes can
quickly adapt to the change in demand by ensuring that the right size and number of
pods are being used. This results in improved performance while reducing resource
wastage and cost. Yet, not all autoscaling setups are created equal.

Flex

Can you be flexible? Certain workloads are suitable for spot instances. Spot instances
enable cloud providers to sell extra capacity; this means that their availability is closely
coupled with demand and not guaranteed. Typically you will enter a bidding process in
which you specify a price-per-hour you are willing to pay. Implementation is worth the
effort, because spot VMs can significantly reduce your costs — if you want to learn more
about when and how to apply spot instances,

Configure quality of service

Kubernetes configurations provide three Quality of Service (QoS) classes for pods:
Guaranteed, Burstable, and Best Effort. These classes help achieve higher utilization of
node resources, resulting in less wastage and more cost benefits. Based on the defined
resource limit and request parameters, you can assign pods to one of the three classes.
QoS classes help the Kubernetes scheduler determine the scheduling of the pods on
nodes — ensuring the nodes’ resources are maximally utilized. They also decide the
order of the eviction priority of the pods when a node gets low on resources.

[] What next?

As you may have noticed, real-world resource usage in the highly volatile K8s
environment means that tracking actual usage levels and performing cloud cost
management to distribute overhead expenses is no small challenge. Traditional
approaches to calculating resource consumption and related costs are inefficient,
propagate inaccuracies, and often are too perplexing to even achieve manually.

In this guide, we have presented several comprehensive and practical strategies that
you can apply to mitigate these issues. Whether you are deploying Kubernetes clusters
directly or with a cloud service provider such as AWS EKS, a robust K8s labeling strategy
pays huge dividends. And, when it comes to cost savings, those six areas for
optimization that we detailed can have a significant impact on the bottom line.

éa)

Identifying your K8s units are just the starting point to creating unit of
economics to inform your FinOps teams. Applying the FinOps methodology
helps with cloud financial management by blending cost, agility, and quality

at the pod level.

_ J

We are, of course, not impartial observers of the cloud cost ecosystem here at Finout!
With Finout, you can integrate with cloud providers and observability platforms to
combine your business metrics with costs in order to reveal your unit of economics and
make better-informed business decisions. Finout's Kubernetes cost monitoring tools
empower you to precisely allocate your Kubernetes costs to your business unit. Want to
see Finout in action?

https://www.finout.io/book-a-demo-page

